memo:test

差分

このページの2つのバージョン間の差分を表示します。

この比較画面にリンクする

両方とも前のリビジョン 前のリビジョン
次のリビジョン
前のリビジョン
memo:test [2020-12-01 11:56]
Decomo
memo:test [2020-12-09 09:21]
Decomo 削除
行 1: 行 1:
-27. ZFS Primer+====== ZFSのヤバげな機能Special Allocation ClassがFreeBSD 12.2で対応されてた ======
  
-ZFSは先進的で現代的なファイルシステムで、特に伝統的なUNIXファイルシステムでは利用できなかった機能の提供を目的に設計されました。 +OpenZFS 2.0リリースの陰でひっそりと、FreeBSD 12.2-RELEASEZFS実装Special Allocation Class(以下SACと略すことが追加されていた。
-ジナルはSunでソースのオープン化意向ととも開発されたため他のオペレーティングシステムへ移植ことが可能でした。 +
-OracleによSunの買収後、ZFSのオリジナル開発者の何人か、オープンソースバージョンの継続的で共同開発を提供するために[[http://open-zfs.org/wiki/Main_Page|OpenZFS]]を創設しました。+
  
-ここからZFS特徴概要を記し+時系列的にはOpenZFS 2.0が2020年12月1日、FreeBSD 12.2Rが10月27日リリースなで、まったく陰ってはないんですけどね、インパクトありそうな機能割にはリリースノートに載がなく、''zpool status''たら「プールのアップグレードができるぜ!」と出たので調べてみたら追加されていたという。関連るコミットはこの辺→[[https://svnweb.freebsd.org/base?view=revision&revision=354382|Rev.354382]] [[https://svnweb.freebsd.org/base?view=revision&revision=354385|Rev.354385]] [[https://svnweb.freebsd.org/base?view=revision&revision=354941|Rev.354941]]
  
-**ZFSトランザクションを持つCopy-On-Write ([[https://en.wikipedia.org/wiki/ZFS#Copy-on-write_transactional_model|COW]])なファイルシステムす。** +Special Allocation Class自体は[[https://github.com/openzfs/zfs/releases/tag/zfs-0.8.0|ZoL 0.8.0]]で2019年5月24日リリーれ、その後、illumosへックポートを経て、めFreeBSD取り込れた模様ZFS実装が新生OpenZFSベ切り替わろうとしている、Legacy ZFSをきっちりメンテする姿勢には頭が下がります。
-各書き込み要求ついて、関係するディクブロックのコピーが作られ、そして全て変更は元ブロックではなコピー対して作用し +
-書き込み完了すると、全てのブロックポインタの指す先がそのしいコピーに変更されます。 +
-これは、ZFSは常に空き領域に書き込み、ほんどの書き込みはシーケンシャルで、そしてバージョンのファイルは新バージョンの書き込みが完全に成功す分離されないことを意味します。 +
-ZFSはディスクへの直接アクセス行い、複数の読み込み/込み要求をトラザクションにまとめます。 +
-ほとんどのファイルシスムはこれを行わず、ただディスクブロックへアクセスするのみです。 +
-完了か失敗どちらか一方定まるトランザクション、[[https://blogs.oracle.com/bonwick/raid-z|ライトホール]]は決して存在せず、そしてファイルシステムの確認ユーティリティは必要ないことを意味します。 +
-このトランザクションベースの設計により、追加のストレージ領域足されれば、それはすぐさま書き込み用に利用可能となります。 +
-データの再均衡化のために、データをコピーして既存のデータを全ての利用可能なディスクに横断的に上書きすることができます。 +
-128ビットファイルシステムなので、ファイルシステムとファイルの最大サイズは16エクサバイトです。+
  
-**ZFS自己修復ファイルシステムして設計されました。** +で、肝心のSpecial Allocation Class何かというと、I/O性能直結データを専用のvdev格納て性能改善るもののよう多少確さを欠く表現だが、階層化トレージのZFS版いえる。
-ZFSはデータを書くたびに対象のディスクブロックごとチェックサムを生成し記録しま。 +
-ZFSはデータを読むたび、対象のディスクブロックごとのチェックサムを読み込み検証ます。 +
-メディアのエラーや“ビット腐敗”はデータに変化引き起こし、そのチェックサムが一致すことはありません。 +
-ZFSがミラーないしRAIDZ構成のプール上にディスクブロックのチェックサムエラーを検出した場合、ZFSは壊れたデータを正しいデータで置き換えます。 +
-滅多に読まれないディスクブロックあることから、定期的なscrubをスケジューリングし、ZFSが全データブロックを読んでチェックサム検証と異常ブロック訂正が行えるようにすると良いでしょう +
-冗長性とデータ訂の提供のために複数のディスク要求される一方で1ディクのシステムにおいてもZFSはデタ異常検出を提供します。 +
-FreeNAS®は各ZFSプールに対し月1回のscrubを自動的にスケュールし、そ結果は[[https://www.ixsystems.com/documentation/freenas/11.3-U5/storage.html#pools|Pools]]を選択し (Settings)→Statusクリックすと表示されます。 +
-scrub結果をチェックすることは、ディスクの潜在的な問題の早期発見につながる可能性があります+
  
-伝統的なUNIXファイルシステムと違い、**ファイルシステム作成時にパーティションサイズを決める必要ありません。** +ZFSで扱うータ種類に応じてvdevをAllocation Classという概念で分類しておりOpenZFS 2.0時点では以下5種類となっている。ちなみAllocation Classは元は[[blog:2020:2020-10-07|dRAID]]で導入されたもで、その後、開発コミュニティよって汎用化さ現在の形となったそうだ
-代わりに、vdevと呼ばれるィスクグループがZFSプールに組み込まれます。 +
-ファイルシステムは必要に応じて、プールから生成されます。 +
-より多くの容量が必要になった時は、同一のvdevをプールにストライピングすことができます +
-FreeNAS®おいて、[[https://www.ixsystems.com/documentation/freenas/11.3-U5/storage.html#pools|Pools]]はプール作成と拡張使わます +
-プール+
  
-Unlike traditional UNIX filesystems, it is not necessary to define partition sizes when filesystems are created. Instead, a group of disks, known as a vdev, are built into a ZFS pool. Filesystems are created from the pool as needed. As more capacity is needed, identical vdevs can be striped into the pool. In FreeNAS®, Pools is used to create or extend pools. After a pool is created, it can be divided into dynamically-sized datasets or fixed-size zvols as needed. Datasets can be used to optimize storage for the type of data being stored as permissions and properties such as quotas and compression can be set on a per-dataset level. A zvol is essentially a raw, virtual block device which can be used for applications that need raw-device semantics such as iSCSI device extents.+^  クラス  ^  SAC  ^  用途  ^  専用vdevを割り当てた時の効果 
 +| Normal |  ×  | 通常のデータを扱うvdev。ミラーとかRAIDZとか。 | | 
 +| Log |  ×  |ZILのレコード。いわゆるSLOG。 | 同期書き込みの高速化 | 
 +| Dedup |  ○  |重複排除テーブル(DDT)のデータ | 重複排除パフォーマンスの向上とDDTのメモリ使用量の削減 | 
 +| Metadata |  ○  | プールとファイルシステムのメタデータ | メタデータ操作(ファイル一覧の取得など)パフォーマンスの向上 | 
 +| Small Blocks |  ○  | レコードサイズ以下のブロック | 小さなサイズの膨大なI/O性能の改善。詳細は後述 |
  
-ZFS supports real-time data compression. Compression happens when a block is written to disk, but only if the written data will benefit from compression. When a compressed block is accessed, it is automatically decompressedSince compression happens at the block level, not the file level, it is transparent to any applications accessing the compressed data. ZFS pools created on FreeNAS® version 9.2.1 or later use the recommended LZ4 compression algorithm.+表で〇を付けたAllocation ClassがSpecial Allocation Classとされている。それぞれのSACの役割は名前のごとくで、専用vdev (Special vdev)を割り当てるとそれなりに効果がありそうだ。とりわけSmall Blocksは[[https://www.napp-it.org/doc/downloads/special-vdev.pdf|劇的な性能改善の可能性]](PDF)を秘めている。
  
-ZFS provides low-cost, instantaneous snapshots of the specified pool, dataset, or zvol. Due to COW, snapshots initially take no additional space. The size of a snapshot increases over time as changes to the files in the snapshot are written to disk. Snapshots can be used to provide a copy of data at the point in time the snapshot was created. When a file is deleted, its disk blocks are added to the free list; however, the blocks for that file in any existing snapshots are not added to the free list until all referencing snapshots are removed. This makes snapshots a clever way to keep a history of files, useful for recovering an older copy of a file or a deleted file. For this reason, many administrators take snapshots often, store them for a period of time, and store them on another system. Such a strategy allows the administrator to roll the system back to a specific time. If there is a catastrophic loss, an off-site snapshot can restore the system up to the last snapshot interval, within 15 minutes of the data loss, for example. Snapshots are stored locally but can also be replicated to a remote ZFS pool. During replication, ZFS does not do a byte-for-byte copy but instead converts a snapshot into a stream of data. This design means that the ZFS pool on the receiving end does not need to be identical and can use a different RAIDZ level, pool size, or compression settings.+ZFSのファイルI/Oは原則的に128KiB単位((データセット毎にrecordsizeプロパティで変更可能))で行われ、それに満たないデータは、より小さなレコードが使われる。この小さなレコードがI/O性能にそれなりに影響するようで、Small Blocksは指定サイズ以下のブロックの読み書きをSpecial vdevにオフロードするようなイメージとなる。つまり、Special vdevとしてSSDを割り当てると、その特性を活かして膨大な小規模I/Oを捌けるようになる、というわけだ。
  
-ZFS boot environments provide a method for recovering from a failed upgrade. In FreeNAS®, a snapshot of the dataset the operating system resides on is automatically taken before an upgrade or a system update. This saved boot environment is automatically added to the GRUB boot loader. Should the upgrade or configuration change fail, simply reboot and select the previous boot environment from the boot menu. Users can also create their own boot environments in System ➞ Boot as needed, for example before making configuration changes. This way, the system can be rebooted into a snapshot of the system that did not include the new configuration changes.+ここで注意が必要なのは、Small Blocksの処理はファイルサイズベースではなく、あくまでブロックサイズベースで行われるということ。なので、小さなファイルの全体がSpecial vdevに格納される訳ではない((Small Blocksの閾値をレコードサイズと同値にして全データをSpecial vdevに送ることは可能))。そもそも、ZFSの書き込みは一旦メモリにキャッシュされ、トランザクショングループ(txg)にまとめられた上でレコードに書き出されるため、必ずしも小さいファイル=小さなレコードとは限らない。逆に、大きなファイルでもレコードサイズ以下の端数は必ず存在するわけで、これらのtxgでレコードサイズ未満となった分がSpecial vdev行きとなるようだ。この辺が一般的な階層化ストレージと大きく異なる部分である。
  
-ZFS provides a write cache in RAM as well as a ZFS Intent Log (ZIL). The ZIL is a storage area that temporarily holds *synchronous* writes until they are written to the ZFS pool. Adding a fast (low-latency), power-protected SSD as a SLOG (Separate Log) device permits much higher performance. This is a necessity for NFS over ESXi, and highly recommended for database servers or other applications that depend on synchronous writes. More detail on SLOG benefits and usage is available in these blog and forum posts:+Small Blocksの対象となるブロックサイズは、レコードサイズ以下の2の冪を任意に指定できる。128KiB以上のレコードサイズが使えるようになるlarge_blocksフィーチャーと合わせて使うと、よりパフォーマンスチューニングの幅が広がるだろう。なお、FreeBSDはレコードサイズが128KiBを超えるデータセットからの起動には対応してないので要注意。
  
-    The ZFS ZIL and SLOG Demystified +Special Allocation Classで性能向上が見込める一方で、その仕組み上、Special vdevが死ぬと一発でプール全体のデータが飛ぶ恐れがある、というかメタデータという極めて重要なデータが飛ぶんだから、ほぼ確実に死ぬと思われる。なので今まで以上に冗長性には留意する必要がある。信頼のおけるSSDで最低でもミラーリング、可能なら電源喪失保護付きSSDで3重ミラーにしたいところ。
-    Some insights into SLOG/ZIL with ZFS on FreeNAS® +
-    ZFS Intent Log+
  
-Synchronous writes are relatively rare with SMB, AFP, and iSCSI, and adding a SLOG to improve performance of these protocols only makes sense in special cases. The zilstat utility can be run from Shell to determine if the system will benefit from a SLOG. See this website for usage information.+Special vdevの容量が一杯になった場合は、従来通り普通のvdevの方が使われるそうだ。
  
-ZFS currently uses 16 GiB of space for SLOG. Larger SSDs can be installed, but the extra space will not be used. SLOG devices cannot be shared between pools. Each pool requires a separate SLOG device. Bandwidth and throughput limitations require that a SLOG device must only be used for this single purpose. Do not attempt to add other caching functions on the same SSD, or performance will suffer. +そのうち試してみたい。
- +
-In mission-critical systems, a mirrored SLOG device is highly recommended. Mirrored SLOG devices are required for ZFS pools at ZFS version 19 or earlier. The ZFS pool version is checked from the Shell with zpool get version poolname. A version value of - means the ZFS pool is version 5000 (also known as Feature Flags) or later. +
- +
-ZFS provides a read cache in RAM, known as the ARC, which reduces read latency. FreeNAS® adds ARC stats to top(1) and includes the arc_summary.py and arcstat.py tools for monitoring the efficiency of the ARC. If an SSD is dedicated as a cache device, it is known as an L2ARC. Additional read data is cached here, which can increase random read performance. L2ARC does not reduce the need for sufficient RAM. In fact, L2ARC needs RAM to function. If there is not enough RAM for a adequately-sized ARC, adding an L2ARC will not increase performance. Performance actually decreases in most cases, potentially causing system instability. RAM is always faster than disks, so always add as much RAM as possible before considering whether the system can benefit from an L2ARC device. +
- +
-When applications perform large amounts of random reads on a dataset small enough to fit into L2ARC, read performance can be increased by adding a dedicated cache device. SSD cache devices only help if the active data is larger than system RAM but small enough that a significant percentage fits on the SSD. As a general rule, L2ARC should not be added to a system with less than 32 GiB of RAM, and the size of an L2ARC should not exceed ten times the amount of RAM. In some cases, it may be more efficient to have two separate pools: one on SSDs for active data, and another on hard drives for rarely used content. After adding an L2ARC device, monitor its effectiveness using tools such as arcstat. To increase the size of an existing L2ARC, stripe another cache device with it. The web interface will always stripe L2ARC, not mirror it, as the contents of L2ARC are recreated at boot. Failure of an individual SSD from an L2ARC pool will not affect the integrity of the pool, but may have an impact on read performance, depending on the workload and the ratio of dataset size to cache size. Note that dedicated L2ARC devices cannot be shared between ZFS pools. +
- +
-ZFS was designed to provide redundancy while addressing some of the inherent limitations of hardware RAID such as the write-hole and corrupt data written over time before the hardware controller provides an alert. ZFS provides three levels of redundancy, known as RAIDZ, where the number after the RAIDZ indicates how many disks per vdev can be lost without losing data. ZFS also supports mirrors, with no restrictions on the number of disks in the mirror. ZFS was designed for commodity disks so no RAID controller is needed. While ZFS can also be used with a RAID controller, it is recommended that the controller be put into JBOD mode so that ZFS has full control of the disks. +
- +
-When determining the type of ZFS redundancy to use, consider whether the goal is to maximize disk space or performance: +
- +
-    RAIDZ1 maximizes disk space and generally performs well when data is written and read in large chunks (128K or more). +
-    RAIDZ2 offers better data availability and significantly better mean time to data loss (MTTDL) than RAIDZ1. +
-    A mirror consumes more disk space but generally performs better with small random reads. For better performance, a mirror is strongly favored over any RAIDZ, particularly for large, uncacheable, random read loads. +
-    Using more than 12 disks per vdev is not recommended. The recommended number of disks per vdev is between 3 and 9. With more disks, use multiple vdevs. +
-    Some older ZFS documentation recommends that a certain number of disks is needed for each type of RAIDZ in order to achieve optimal performance. On systems using LZ4 compression, which is the default for FreeNAS® 9.2.1 and higher, this is no longer true. See ZFS RAIDZ stripe width, or: How I Learned to Stop Worrying and Love RAIDZ for details. +
- +
-These resources can also help determine the RAID configuration best suited to the specific storage requirements: +
- +
-    Getting the Most out of ZFS Pools +
-    A Closer Look at ZFS, Vdevs and Performance +
- +
-Warning +
- +
-RAID AND DISK REDUNDANCY ARE NOT A SUBSTITUTE FOR A RELIABLE BACKUP STRATEGY. BAD THINGS HAPPEN AND A GOOD BACKUP STRATEGY IS STILL REQUIRED TO PROTECT VALUABLE DATA. See Periodic Snapshot Tasks and Replication Tasks to use replicated ZFS snapshots as part of a backup strategy. +
- +
-ZFS manages devices. When an individual drive in a mirror or RAIDZ fails and is replaced by the user, ZFS adds the replacement device to the vdev and copies redundant data to it in a process called resilvering. Hardware RAID controllers usually have no way of knowing which blocks were in use and must copy every block to the new device. ZFS only copies blocks that are in use, reducing the time it takes to rebuild the vdev. Resilvering is also interruptable. After an interruption, resilvering resumes where it left off rather than starting from the beginning. +
- +
-While ZFS provides many benefits, there are some caveats: +
- +
-    At 90% capacity, ZFS switches from performance- to space-based optimization, which has massive performance implications. For maximum write performance and to prevent problems with drive replacement, add more capacity before a pool reaches 80%. +
-    When considering the number of disks to use per vdev, consider the size of the disks and the amount of time required for resilvering, which is the process of rebuilding the vdev. The larger the size of the vdev, the longer the resilvering time. When replacing a disk in a RAIDZ, it is possible that another disk will fail before the resilvering process completes. If the number of failed disks exceeds the number allowed per vdev for the type of RAIDZ, the data in the pool will be lost. For this reason, RAIDZ1 is not recommended for drives over 1 TiB in size. +
-    Using drives of equal sizes is recommended when creating a vdev. While ZFS can create a vdev using disks of differing sizes, its capacity will be limited by the size of the smallest disk. +
- +
-For those new to ZFS, the Wikipedia entry on ZFS provides an excellent starting point to learn more about its features. These resources are also useful for reference: +
- +
-    FreeBSD ZFS Tuning Guide +
-    ZFS Administration Guide +
-    Becoming a ZFS Ninja Part 1 (video) and Becoming a ZFS Ninja Part 2 (video) +
-    The Z File System (ZFS) +
-    ZFS: The Last Word in File Systems - Part 1 (video) +
-    The Zettabyte Filesystem +
- +
-27.1. ZFS Feature Flags +
- +
-To differentiate itself from Oracle ZFS version numbers, OpenZFS uses feature flags. Feature flags are used to tag features with unique names to provide portability between OpenZFS implementations running on different platforms, as long as all of the feature flags enabled on the ZFS pool are supported by both platforms. FreeNAS® uses OpenZFS and each new version of FreeNAS® keeps up-to-date with the latest feature flags and OpenZFS bug fixes. +
- +
-See zpool-features(7) for a complete listing of all OpenZFS feature flags available on FreeBSD.+
  
 +===== 参考サイト =====
  
 +  * [[https://github.com/openzfs/zfs/pull/5182|Metadata Allocation Classes by don-brady · Pull Request #5182 · openzfs/zfs · GitHub]]
 +  * [[https://docs.google.com/presentation/d/17nYRgs-TAIOPODOMaq-VwuJ0LqJHEXBfM9sUDxJUJ54|Pool Allocation Classes - 5182]]
 +  * [[https://forums.servethehome.com/index.php?threads/zfs-allocation-classes-special-vdev.28862/|ZFS Allocation Classes / Special VDEV | ServeTheHome Forums]]
 +  * [[https://forum.level1techs.com/t/zfs-metadata-special-device-z/159954|ZFS Metadata Special Device: Z - Wikis & How-to Guides - Level1Techs Forums]]
 +  * [[https://zfs.datto.com/2017_slides/brady.pdf|Using Allocation Class]](PDF)
 +  * [[https://www.napp-it.org/doc/downloads/special-vdev.pdf|Allocation Classes Feature - Benchmarks and use case on OmniOS]]